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Abstract. Tracking output is a very attractive source of labeled data sets that,
in turn, could be used to train other systems for tracking, detection, recognition
and categorization. In this context, long tracking sequences are of particular im-
portance because they provide richer information, multiple views, wider range of
appearances. This paper addresses two obstacles to the use of tracking data for
training: noise in the tracking data and the unreliability and slow pace of hand
labeling. The paper introduces a criterion for detecting inconsistencies (noise) in
large data collections and a method for selecting typical representatives of con-
sistent collections. Those are used to build a pipeline which cleanses the tracking
data and employs instantaneous (shotgun) labeling of vast numbers of images.
The shotgun labeled data is shown to compare favorably with hand labeled data
when used in classification tasks. The framework is collaborative – it involves a
human-in-the loop but it is designed to minimize the burden on the human.

1 Introduction

In this paper: (i) We propose a framework for detection and cleansing of tracking output
noise due to data association errors and to spurious track births or premature expira-
tions. The framework is based on clustering with respect to a space-time distance and
the notions of initial and terminal appearances of a tracked object; (ii) We describe a
procedure for labeling the tracking output with minimal human intervention. The proce-
dure uses information-theoretic approach to detect inconsistencies in the tracker output
and to extract an iconic representation for each consistent track; and (iii) We apply
the framework and the labeling procedure in the design and construction of a pipeline
for massive (shotgun) labeling of objects from video-based trackers. The pipeline has
three principal stages. The first stage, described in Section 3.1, is designed to correct
as much as possible association errors. We use a track segmentation method, based
on a space (features)-time metric. The second stage, described in Section 3.2, is de-
signed to address the tracker noise caused by the births of spurious targets produced



Fig. 1. (Left) Shotgun Pipeline data flow: from raw tracks to consolidated consistent tracks –
note that several frames were deleted because there was a miss-match in the final and initial
appearances of the constituent tracklets. (Right) A diagram of the Shotgun Pipeline architecture.

when the trackers ”lose their targets” and generate new tracks midstream. This leads to
explosion in the number of tracks and thus can have a very detrimental effect on the
performance of human-labelers. In the final stage, we test the consistency of the con-
solidated tracks and then select automatically iconic representatives from the consistent
tracks. The iconic representatives are labeled manually and their labels are propagated
automatically throughout the consolidated tracks.See Figure 1 for a pipeline overview.

We use tracking data from a three-hour surveillance video of vessels in a busy es-
tuary, captured by a distant on-shore camera, to test the the framework and the pipeline
for data cleansing and analysis and target labeling in a cluttered environment The ex-
perimental results are reported in Section 4.

1.1 Related Work

There has been a considerable interest in detecting and cleaning mislabeled data for
training in the AI and data mining communities, [2], [1], [6], [8], and for face detection
and recognition, [17]. These approaches boil down to taking an already labeled data
set and applying cross validation of some categorization/recogntion method based on
pre-selected set of classifiers or by using case based learning. Semi-supervised learning
(SSL) can be used to minimize the tedious hand-labeling task [3, 4, 11, 10, 19] by start-
ing with a small kernel of reliably hand labeled data and a large collection of unlabeled



data. The initial labeled data is used to learn a classifier; the classifier is applied to label
part of the unlabeled data; then a new classifier is learned from all the currently labeled
data. The process is iterative. The success of an SSL approach depends very much on
the selection of: initial training sets, features, and suitable similarity functions and ker-
nels. In contract, we present a method to detect the data categories and to label large
sets of data with minimal human intervention. To select the categories represented in
the data and assign labels, we develop an automatic method for extraction of a small
number of most informative exemplars – called iconics. The exemplar-based analysis
of data is a staple of active learning (AL). In a typical AL framework, the machine
learning algorithm uses a small initial set of labeled data and a dialogue with an expert
to select (and label) the data from which it learns and to set by hand appropriate tuning
parameters [13, 7, 14, 5, 15, 18, 12]. Our method does not have tuning parameters and
does not rely on an initial correctly labeled set.

2 Track Consistency Criterion and Iconics Selection

2.1 Background

For noise detection, track segmentation and selection of iconic representatives, we ex-
ploit mutual and disjoint information together with a space-time metric built from the
feature metric used by the tracker. The principal idea is to search for noise by measuring
when two feature vectors in a sequence of tracking data are more different than alike.

We use the term random variable to denote, both, scalar or vector-valued random
variables. Since we work only with discrete variables and finite sample spaces, the
sample space could be enumerated, the problem re-mapped, and a uni-variate notation
could be used as appropriate. We follow standard conventions: we use P to denote a
probability measure; random variables are denoted by capital letters and their values
(samples), by lower case letters. For a discrete random variable Xwith a sample space
X , the point mass function is denoted by pX , pX(x) = P [X = x], x ∈ X , and the
entropy, H(X) is given by

H(X) = −
∑
x∈X

pX(x) log pX(x).

Since we deal only with discrete random variables, without danger of misunderstanding,
we use the term ”random variable” to mean a ”discrete random variable” and ”proba-
bility distribution” to refer to the point mass function. The joint probability distribution
of two random variables, Xand Y , with sample spaces X and Y , respectively, is defined
by, pX,Y (x, y) = P [X = x, Y = y], for x ∈ X , y ∈ Y. When there is no confusion,
we will omit the subscripts, and thus use p(x, y) instead of pX,Y (x, y).

Next, we summarize the relevant definitions from information theory. Let Xand Y
be two random variables with finite sample spaces X and Y , respectively, and m = |X |
and n = |Y|. We enumerate the elements of the sample spaces,

X = {x1, . . . , xm}, Y = {y1, . . . , yn}.



The joint Shannon entropy, H(X,Y ), the mutual information, I(X,Y ), and the disjoint
information, D(X,Y ), are defined as follows

H(X,Y ) = −
m∑

i=1

n∑
j=1

p(xi, yj) log p(xi, yj) (1)

I(X,Y ) = H(X) + H(Y )−H(X,Y ), (2)
D(X,Y ) = H(X,Y )− I(X,Y ). (3)

2.2 Detection of Inconsistent Instances in Data Collections

Given a feature vector x = (x1, x2, . . . , xn), for example an image or a histogram,
it is interpreted as a sample of size n of a random variable X , and one can infer the
probability distribution pX from the sample. In the case of two feature vectors x and y,
by inferring the probability distributions of the corresponding random variables X and
Y , one can answer the question whether the collections x and y are more different than
they are alike by comparing the mutual and disjoint information of X and Y . When
there is no danger of confusion, we say, for short, ”the mutual and disjoint informa-
tion of the feature vectors” and write D(x,y) and I(x,y), instead of ”the mutual and
disjoint information, D(X, Y ) and I(X, Y ), of the corresponding random variables X
and Y .

More generally, we say that the collection S of feature vectors is possibly incon-
sistent, if there exist feature vectors x and y in S for which the disjoint information is
sufficiently higher than the mutual, i.e.,

D(x,y)− I(x,y) > α,

for some threshold α ≥ 0.
To detect possible class noise (misclassifications) in the collection S, one can at-

tempt to search for appropriate threshold levels. Instead, we exploit a metric d over all
possible feature vectors,

d : X → [0,∞)

and consider the collection inconsistent if a most distant pair of features with respect to
the metric is more different than alike in terms of the disjoint/mutual information.

Definition 1: We will say that the collection of feature vectors, S, is potentially in-
consistent (contains class noise or misclassifications), if a most distant pair of feature
vectors x̂ and ŷ defined by

(x̂, ŷ) = arg max
(x,y)∈S×S

d(x,y) (4)

satisfy
D(x̂, ŷ) > I(x̂, ŷ). (5)



Fig. 2. The evolution of the appearance of an object in a track has three stages: initial, B(τ),
mature, M(τ), and terminal, T (τ). Furthermore, the initial and terminal stages are partitioned
into into unstable and stable clusters of feature vectors (appearances), respectively.

In particular, a track τ = {xt1 , . . . ,xtn
} is a time stamped collection (a stream) of

feature vectors endowed with a natural metric

d(xti
,xtj

) = gf (xti
,xtj

) + c2|ti − tj |2. (6)

Here gf is a metric in feature space and

c = max
ti<tj

(
1

|ti − tj |
gf (xti

,xtj
)
)

plays the role of the maximum speed of signal propagation in the stream.
We introduce a criterion for track consistency. The criterion may require a human-

in-the loop to inspect no more than two frames in the track. Let xt and xt′ be as far as
possible in the track τ , i.e.,

(xt,xt′) = arg max
(x,y)∈τ×τ

d(x,y) (7)

A track τ is automatically consistent, if I(xt,xt′) > D(xt,xt′), where (xt,xt′),
satisfies (7). If a track is not automatically consistent, then the final decision whether it
is consistent or not is made by a human-in-the-loop. The human inspects only the two
images (track frames) corresponding to xt and xt′ . Thus inconsistent tracks are diag-
nosed by a human-in-the loop (or another external decision maker) but this intervention
is kept to a minimum.

With this criterion at hand, we cleanse tracking data by simply discarding inconsis-
tent tracks.

2.3 Iconic Images and Track Consistency

To label in one shot all the images corresponding to a consistent track , we extract
automatically a single iconic image (IIM) from each consistent track. The IIM has to be
informative; and not overwhelming for the human.

To assure that the representative of a noise free collection is optimal in information
theoretic sense, we propose to use as an iconic feature vector (IFV) a feature vector that
minimizes the average pairwise disjoint information over all other feature vectors in the
in the collection.



Fig. 3. (Left)A sample frame from the surveillance video with two tracked objects. (Right) The
tracked objects’ background subtraction-based representations; the histograms of these represen-
tations are the feature vectors of the objects in this frame.

Definition 2: A feature vector x̃ ∈ S is an iconic feature vector of the collection S , if

x̃ = arg min
x

1
|S|

∑
y∈S

D(x,y). (8)

2.4 Initial and Terminal Appearance of a Track

We model the evolution of the appearance of an object in a track τ = {xt1 , . . . ,xtn}
as a three-stage process: initial stage B(τ) = {xt1 , . . . ,xtφ

}, a mature(stable)stage
M(τ) = {xt(φ+1) , . . . ,xt(n−φ−1)}, and a terminal stage T (τ) = {xt(n−φ) , . . . ,xtn

}.
See Figure 2. We assume that the initial stage and the terminal stage have at most φ
frames. For tracks obtained from a background subtraction tracker, which uses running
averages to estimate the background layer, φ equals the size of the history window.
When the size of the history window is not known or is not informative, for example
difference-based trackers which use single frame differences we set φ to a third of the
length of the track.

The concepts of stable and unstable initial and terminal clusters are introduced to
delineate the relatively unstable appearance of an object soon after its birth and just
before its expiration. To determine the initial and the terminal stable and unstable ap-
pearance clusters, we use K-medoids, K = 2, to cluster the object feature vectors in
the track. The metric used in this clustering is the feature space metric gf (·, ·), from
equation (6). By definition, the stable appearance cluster in the initial (terminal) stage
is the one for which most of the objects are closer (in time-order) to the interior, mature
stage M(τ) of the track. Formally, let B1 and B2 be are the two clusters of B(τ). The
relative ordering of B1 and B2 is with respect to to their median time stamps, i.e.,

med({t|xt ∈ B1}) ≤ med({t |xt ∈ B2}). (9)

And similarly, let T1 and T2 be the two clusters of terminal features then T1 and T2 are
reverse-ordered with respect to their members median time stamps. Thus,

med({t|xt ∈ T2}) ≤ med({t|xt ∈ T1}). (10)

Then, B2 and T2 represent the stable appearance initial and terminal clusters of the
track.



Table 1. Binary Categorization (recognition success rates out of 10 runs) using hand-labeled
training data HL: 285 hand-labeled images for training (95 per each of the three categories), and
then Shotgun-labeled training data SL: 4680 Shotgun labeled features (1560 per category) by
examining only 216 images. For the definition of success rate SR see equation (13).

Vessel Mean of True Positives Std of True Positives Success Rate SR
HL SL HL SL HL SL

Speedboat 80.87% 85.25% 11.00% 4.00% 78.75% 81.25%
Ferry 92.25% 96.50% 2.00% 2.00% 91.25% 96.25%
Cruise 84.00% 84.87 6.00% 3.00% 73.75% 81.25%

Definition 3: Let µ(B) and µ(T ) represent the medoid feature centers for the clusters
B2 and T2, respectively, the initial and the final appearance feature vectors S(τ) and
E(τ) are the stable feature vectors closest to these medoids. Namely,

S(τ) = argmin
xt∈B2

(gf (xt, µ(B))) (11)

E(τ) = argmin
xt∈T2

(gf (xt, µ(T ))) (12)

3 Shotgun Pipeline

We are now ready to build a pipeline that will be used to label in one sweep the images
in multiple tracks. The input to the pipeline, Figure 1, are a collection of tracks {τi}κ

i=1

extracted from a surveillance video over some period of time. The pipeline stages are:
track segmentation/deconstruction; consolidation; consistency check and iconic extrac-
tion and a single shotgun labeling of all the consistent tracks.

3.1 Track Segmentation

We segment each track into tracklets using unsupervised agglomerative clustering and
the metric d defined in (6). If the task was to really understand the possible optimal seg-
mentation of the track into consistent tracklets, then one needs to develop an adequate
stopping criterion. This is not our goal. Here we are only concerned with creating few
relatively long tracks that are consistent. We use gap statistic driven clustering [16] to
obtain an initial segmentation of each track into tracklets each of which is more consis-
tent than the original track. At the end of the segmentation stage we obtain, completely
automatically, all the resulting tracklets {τi1 , . . . , τni

}κ
i=1. We thereat each one of them

as a track and extract their initial and terminal feature vectors {S(τi1), . . . , S(τni)}κ
i=1

and {T (τi1), . . . , T (τni)}κ
i=1. This is a crude segmentation, it could result into over-

segmentation, and by the very nature of the gap statistic clustering the results could be
slightly different for different segmentation runs. Over-segmentation can lead to inef-
ficient labeling. Thus the next stage of the pipeline is devoted to consolidation of the
possibly over-segmented tracks.



Table 2. Multi-category confusion matrices using: (Left) Training with hand-labeled data (HL)
and (Right) Training with shotgun-labeled data (SL).

Training on the HL data. Training on the SL data.
Vessel Speedboat Ferry Cruise Speedboat Ferry Cruise
Speedboat 34 3 4 35 0 6
Ferry 2 38 1 2 39 0
Cruise 14 1 26 10 0 31

3.2 Consolidating trajectories

The input in this stage is the collection of all tracklets. To consolidate together tracklets,
we follow the network model and the linear-programming optimization introduced in
[9]. The occlusion nodes in the network correspond to the terminal and initial nodes
of the different tracklets. The appearance similarity component in the cost function is
computed using the feature space metric gf (·, ·) and in particular, if the terminating
tracklet τia is in occlusion with the new-born tracklet τjb the appearance component
of the metric is gf (T (τia), S(τjb)). Here T (τia) and S(τjb) are the corresponding ter-
minal and initial appearance vectors. Furthermore even after possible consolidation we
discard the unstable terminal features from the terminating tracklet and the unstable
initial segments from the new tracklet.

4 Applications and Experiments

In this section we present the results obtained by applying our framework to: detect
errors in tracker output, cleanse tracker output, and label cleansed tracking output so
that it can be used for training categorization engines. The experiments were performed
on a three hours long surveillance video of shipping traffic in an estuary. Due to the
width of the river and the shipping lanes patterns, the camera is far away from the targets
(the distances target-to-camera are in the range 380 meters to 1100 meters). We used
a background-subtraction based tracker to process the video. Due to the low resolution
and the dynamic appearance of the river surface, feature vectors using SIFT or HOGs
descriptors are not applicable to this tracking scenario, since many of the tracked objects
are no more than four pixels wide. Instead, we opt to use simpler features in the form
of histograms. (See Figure 3).

Tracker Errors Detection The tracker detected ninety one tracks (# of feature vectors
24,738). These tracks were tested for consistency using the Consistency Stage of the
Shotgun Pipeline. Thirty one tracks (accounting for over 12,364 feature vectors) were
found inconsistent (objects of clearly different categories were mixed in the same track).
The whole consistency test of the original tracks required that a human-in-the-loop
looked a 96 images (two images per each not automatically consistent track, such tracks
are automatically flagged).



Table 3. Statistics of the multi-class classification rates over all categories for the hand-labeled
and shotgun-labeled experiments. By definition, the classification rate is the percent of correctly
labeled data.

Training Data Set Mean Std Median
Hand-labeled (HL) 85.00% 3.40% 85.40%
Shotgun-labeled (SL) 86.30% 2.60% 86.20%

Hand Labeling Data vs Shotgun A team of five students (two PhD students in com-
puter vision and three undergraduate students with no prior experience) hand-labeled,
independently, the tracking results. All reported difficulties assigning proper labels due
to the low image resolution and clutter. Only a very small number of the targets and
the feature vectors were hand-labeled unambiguously and correctly. The whole set was
processed by the Shotgun Pipeline. After de-construction and consolidation (fully auto-
matic), a human-in-the loop was asked to examine 105 consolidated tracks. Ultimately
44 tracks were found inconsistent and 94 were found to be consistent. This allowed us
to label 10, 900 feature vectors at the total cost of examining 304 images.

Hand Labeling Data vs Shotgun in Recognition and Categorization To test the perfor-
mance of Shotgun labeled data in recognition and categorization tasks, we created the
following data sets of images of objects in the following categories: speed boat, ferry,
and cruise ship: (i) HL: 285 hand-labeled images for training (95 per each of the three
categories); (ii) Test: A testing set: 123 hand-labeled feature vectors (41 per each of
the three categories); (iii) SL: 4680 Shotgun labeled features (1560 per category) by
examining a total of 216 images.

The HL and SL training sets were used to train three neural networks to perform
binary categorization tasks (a Speed boat recognition NN, a Ferry recognition NN, and
a Cruise ship recognition NN ). The results using the hand labeled set HL and the
Shotgun -labeled training set SL are shown in Table 1. We define the success rate, SR,
as:

SR =
True Positives + True Negatives

True Positives + True Negatives + False Positives + False Negatives
. (13)

To test the performance in a multi category scenario we trained another NN. The results
are shown in Tables 2 and 3.

The results indicate that we can replace massive hand-labeling with the less de-
manding Shotgun labeling while improving the quality of categorization. Our future
work centers on the improvement of the selection of iconic images and on developing
methods to exploit inconsistent video streams data as negative response training data.
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